A Network Traffic Prediction Model Based on Quantum Inspired Pso and Wavelet Neural Network
نویسندگان
چکیده
Network traffic flow prediction model is fundamental to the network performance evaluation and the design of network control scheme which is crucial for the success of high-speed networks. Aiming at shortcoming of the conventional network traffic time series prediction model and the problem that BP training algorithms easily plunge into local solution, a network traffic prediction model based on wavelet neural network and PSO-QI is presented in the paper. Firstly, the quantum principle obtained from Quantum PSO(QPSO)has been combined with standard PSO to form a new hybrid algorithm called PSO with Quantum Infusion(PSO-QI). Then, the parameters of wavelet neural network were optimized with PSO-QI and the time series of network traffic data was modeled and predicted based on wavelet neural network and PSO-QI. Experiments showed that PSOQI-wavelet neural network has better precision and adaptability compared with the traditional neural network. Key WordsBP neural network, particle swarm optimization, PSO-QI algorithm, wavelet network traffic
منابع مشابه
Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملApplication of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error
Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014